Establishing Composite Steel-Frame Performance Standards Using CLT Floor Panels

Kadir Sener Assistant Professor, Auburn University

Establishing Composite Steel-Frame Performance Standards Using CLT Floor Panels

- PIs: Drs. Kadir Sener and David Roueche (Auburn Univ.)
- Co-PI: Dr. Brian Via (Auburn Univ.), Prof. David Kennedy (U. Arkansas)
- Students: Hugh Merryday, Emma Rohde, and Megan Potuzak (AU)

Introduction: Mass Timber Use

- IBC 2021 has enabled the use of timber for buildings up to 18 stories, opening up new markets for mass-timber usage
 - Type IV-A (up to 18 stories)
 - Type IV-B (up to 12 stories)
 - Type IV-C (up to 9 stories)
- Mass-timber is widely used as framing (beam, column), walls, and floor systems
- Guidance for mass-timber usage
 Type IV-A
 Type IV-A
 Type IV-B
 considerations (vibration, acoustic, fire, outdoor use, etc.)

Introduction: Steel-Timber Buildings

- Steel structures currently use concrete for flooring systems, which accounts for about 60–70% of the total material quantity
- Numerous advantages exist when concrete floors are replaced with CLT panels

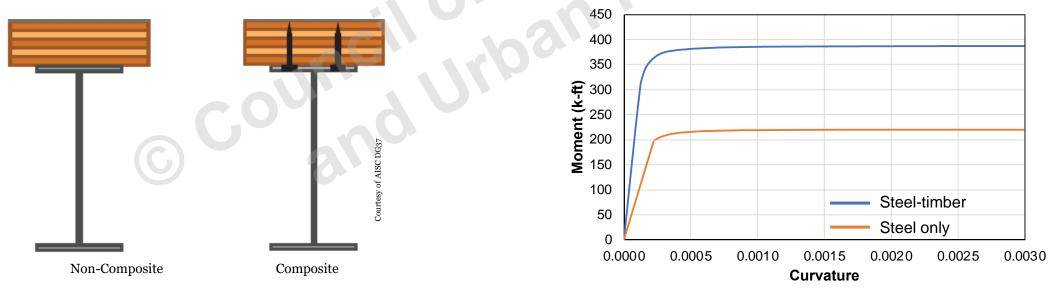
Steel-Timber Floors

- Improved Sustainability
- Reduced Weight
- Faster and More Efficient Constructability

30mi

- Repair/Maintenance
- Structural performance
- End-of-life repurposing

Steel-Concrete Floors



CTBUH Steel-Timber Conference | 23 May 2022

Courtesy of Valipour et al.

Motivation: Hybrid vs. Composite

- Limited guidance exists for designing steel-timber floor systems,
- No guidance exists for composite steel-timber floor members due to lack of experimental research to demonstrate the structural behavior
- Comparative construction cost, speed, and LCA studies are needed to highlight the advantages of steel-timber composite systems against the current state of practice of using concrete floor systems Moment Capacity for Steel and Steel-Timber Beams

Auburn University Samuel Ginn College of Engineering

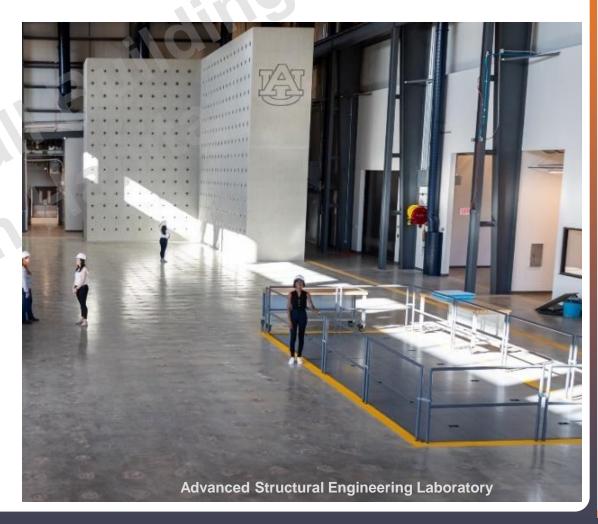
Objective and Research Needs

Objective

The goal of the research project is to facilitate the development of experimentally validated design-detailing configurations and establish consensus design specifications to open up new markets for mass timber CLT panels in the commercial building industry.

Research Tasks:

- Demonstrate Structural Performance
- Conduct Comparative Constructability Studies
- Conduct Comparative LCA Studies



Structural Performance Testing

The experimental research will consist of three major phases:

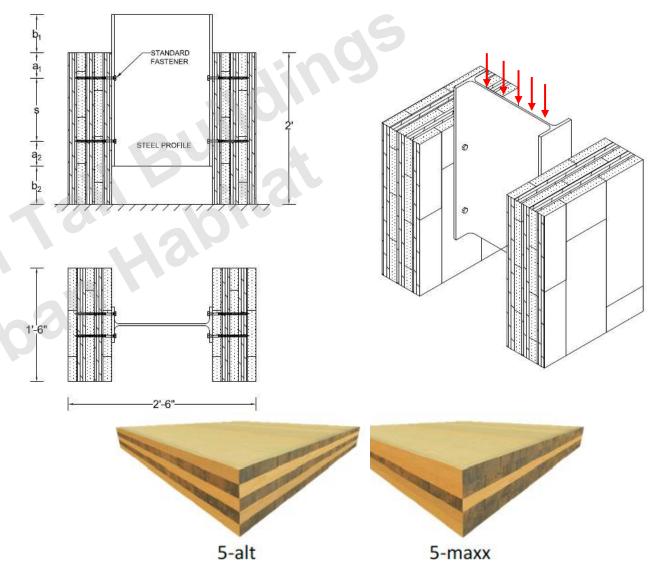
- Phase 1: Pushout Testing
 - Characterize interfacial mechanical fastener behavior
- Phase 2: Beam Testing
 - Demonstrate member-level behavior
- Phase 3: Connections
 - Demonstrate connection behavior

All experimental testing will focus on US-based materials (Steel, CLT, Mechanical fasteners) and construction practices

Phase 1: Push-out testing

Specimen Design Parameters

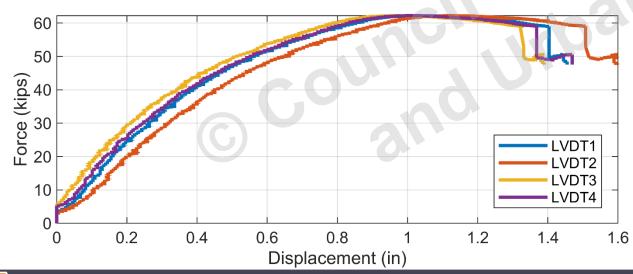
- Anchor types
 - 1. Self-tapping screw (full vs. partial thread)
 - 2. Lag screws
 - 3. Threaded bolts



- Panel Properties
 - 1. Grain orientation $(\perp, //)$
 - 2. Thickness (3-5-7 plies)
 - 3. Layup (alt, maxx)

Samuel Ginn College of Engineering

Auburn University



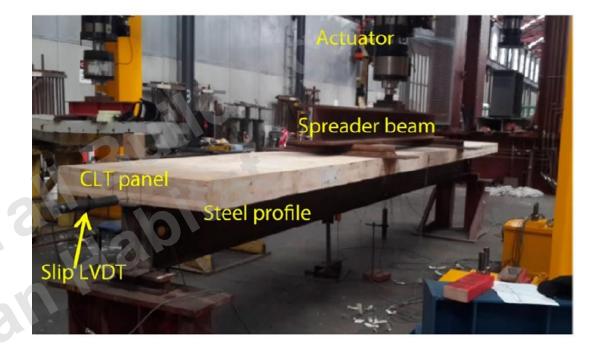
Phase 1: Push-Out Tests

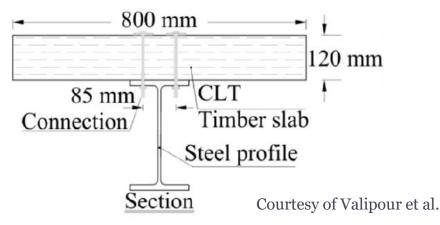

Pushout Test Outcomes:

- Failure mode
- Strength (timber vs. fastener)
- Stiffness (initial and pre-peak)
- Slip Capacity (ductility)
- Force vs. deformation (slip) response

Auburn University Samuel Ginn College of Engineering
CTBUH Steel-Timber Conference | 23 May 2022

Phases 2: Member-Level Testing

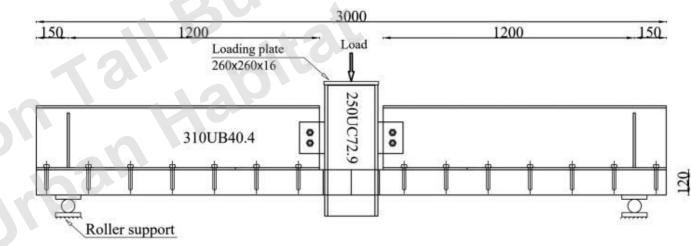

Test Outcomes:


- Flexural strength Evaluating the applicability of existing design methodologies
- Composite action (full vs. partial)
- Stiffness / Serviceability
- Shear strength

Auburn University

Samuel Ginn College of Engineering

- Ductility (deformation capacity)
- CLT effective width



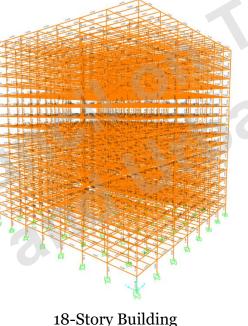
Phases 3: Member-Level Testing

Connection tests:

- Panel adjoining methods
 - Splines
 - Lap joint
 - Continuity Plates
- Connections
 - Shear-resisting
 - Moment+Shear Resisting
- Positive & Negative moment transfer

Courtesy of Valipour et al.

Benchmark Studies: Schedule, Cost, LCA


Design of buildings according to IBC 2021 with different stories using;

- Steel-Concrete (Composite Concrete Floor)
- Steel-Timber (Composite Timber Floor)
- Reinforced Concrete

Auburn University

Samuel Ginn College of Engineering

Building Type	Type IV-C	Type IV-A
No. of Stories	7-story (9)	18-story (18)
Building Height	84 ft (85 ft)	216 ft (270 ft)
Column Spacing	30 ft	30 ft
Floor Area (ft ²)	44,100 (45,000)	44,100 (54,000)

Benchmark Studies: Schedule, Cost, LCA

Study Parameters:

Location

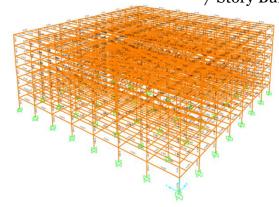
- Seismic-controlled region (LA)
- Wind-controlled region (NYC)

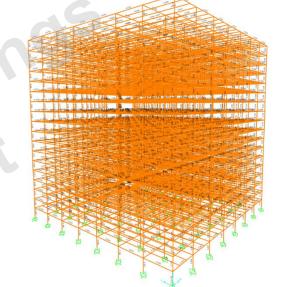
Lateral Force Resisting System

- Moment-resisting frame
- Braced or Shear Walls

• CLT Layers (3- 5- 7-Ply)

- Topping layer for fire, acoustic, vibration considerations
- Level of composite action
 - Partial vs. Full CA


Auburn University

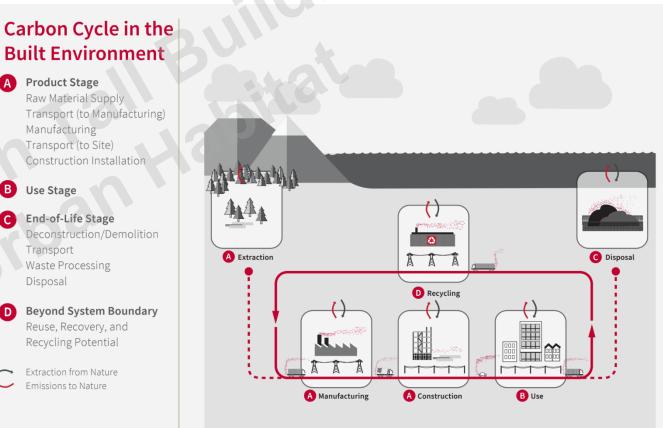

Samuel Ginn College of Engineering

Inclusion of foundation

18-Story Building

7-Story Building

Benchmark Studies: LCA Outcomes


- Focus on the impact of structurally utilizing the composite behavior
- Cradle-to-grave LCA studies using different software/database

(B

- Tally/GaBi
- Athena/Athena
- **One-Click LCA/EU Databases**
- Expected life cycle analyses outputs
 - Potential global warming impact
 - Total embodied energy
 - Stage specific life-cycle energy
 - Combined life-cycle energy
- Sensitivity analysis

Auburn University

Samuel Ginn College of Engineering

Source: Life Cycle Assessment of Buildings: A Practice Guide

Benchmark Studies: Constructability

- Cost Studies
 - Material cost
 - Labor cost
 - Construction crew size
 - Prefabrication
- Schedule Duration Studies
 - Prefabrication

Auburn University

Samuel Ginn College of Engineering

- Formwork elimination
- Erection
 - Ease of installment using small crane
- Shoring
- Camber

Courtesy of ARUP

Current Progress / Expected Future Timeline

- Structural Performance Demonstrative Testing
 - Pushout Tests Ongoing
 - Beam Tests Summer '22
 - Connection Tests Fall '22

- Sustainability & Constructability
 - Benchmark Building Designs Ongoing
 - Concrete Completed
 - Timber/Steel Summer '22
 - Concrete/Steel Summer '22
 - Construction Schedule/Cost Fall '22
 - LCA Fall '22

Auburn University

Samuel Ginn College of Engineering

THANK YOU!

<u>FUTURE: Expanding Mass</u> <u>Timber for Protective</u> <u>Structures</u>

Upcoming AU project with US Air Force on advancing use of mass timber for protective designs

- Hybrid panels
- Projectile/debris protection
- Blast loads
- Connection design
- High strain-rate material characterization

Continue the Conversation

sener@auburn.edu | dbr0011@auburn.edu

References

Hassanieh, A., Valipour, H.R., and Bradford, M.A., (2017). "Composite connections between CLT slab and steel beam: Experiments and empirical models," *Journal of Constructional Steel Research*, Elsevier, Volume 138, pp. 823-836. doi: 10.1016/j.jcsr.2017.09.002. Simonen, K., Huang, M., Rodriguez, B. X., & Todaro, L. (2019). Life Cycle

Assessment of Buildings: A practice guide.

Yang, R., Li, H., Lorenzo, R., Ashraf, M., Sun, Y., and Yuan, Q., (2020).

"Mechanical behaviour of steel timber composite shear connections," *Construction and Building Materials*, Elsevier, Volume 258. doi:

10.1016/j.conbuildmat.2020.119605.

Auburn University Samuel Ginn College of Engineering