Steel-Timber Hybrid Floor Vibrations in Life Science Laboratory Buildings

Ian Neill Associate, LeMessurier

Steel-Timber Hybrid Floor Vibrations in Life Science Laboratory Buildings

Coundu

CTBUH Steel-Timber Hybrid Conference – May 23, 2022

Introductions

Presenter

Structural Engineer Ian Neill, PE LeMessurier Associate

Contributors

 Perkins & Will Jacob Werner Elizabeth Mikula
Jensen Hughes Jeremy Liebowitz
Acentech Jeff Zapfe Rose Mary Su LeMessurier Mike Gryniuk Mithila Madvahan Eric Johnson Emma Rubin Priya Dewan Sebastian Torrente

Life Sciences Tall Buildings

Fenway Center Phase 2, Boston, MA Image courtesy of Gensler and IQHQ

Seaport Parcels N & P, Boston, MA Image courtesy of Morris Adjimi Architects

Lab Building Design Considerations

- Control Areas / Hazardous Uses
- Fire ratings
- Loading docks
- Elevator access
- Acoustics

- Air handling large ducts
- Tenant MEP
- Large floor-to-floor height
- Floor Vibrations for Sensitive Equipment

Vibration Limits for Occupant Comfort

- Typical vibration criteria for offices and residences
- Criteria is typically expressed as an acceleration in %g

Vibration Limits for Sensitive Equipment

Designation	Tolerance Limit µin/s	Applicability
	32,000	Ordinary workshops
	16,000	Offices
(8,000	Computer equipment Residences
	6,000	Hospital patient rooms
	4,000	Surgery facilities, laboratory robots Bench microscopes up to 100x, operating rooms
VC-A	2,000	Microbalances, optical comparators, mass spectrometers Industrial metrology laboratories, spectrophotometers Bench microscopes up to 400x
VC-B	1,000	Microsurgery, microtomes and cryotomes for 5 to 10 μ m slices Tissue and cell cultures, optical equipment on isolation tables Bench microscopes at greater than 400x, atomic force microscopes

Current Construction Practice

- Steel frame construction
- Normal weight concrete slabon-deck
- Steel-concrete composite

NWC SLAB ON METAL DECK

LeMessurier.

STEEL BEAM

Steel-Timber Hybrid Floor System

- Framing system as described in AISC DG 37
- Steel floor beams and girders
- 5-ply CLT timber floor panels spanning between floor beams
- 1" acoustic layer
- 2" normal-weight concrete topping
- STC = 50 to 60
- IIC = 40 to 50

Why Steel-Timber Hybrid?

- Mass Timber is a differentiator in the marketplace
- High span-to-depth ratio compared to All-Timber
- Versatility of steel
- Embodied Carbon
- Does Steel-Timber Hybrid meet vibration performance?

Floor Vibration Study

Floor Vibration Design Guides

Vibration Analysis Methods

- AISC DG-11 Simplified Method
 - Approximate and conservative
 - Material-specific calibrations
- AISC DG 11 Frequency Response Function (FRF)
- CCIP-016 Design Guide (Cement and Concrete Industry Publication)
- Walking path time history analysis
 - Most precise
 - Most difficult to implement

Modal Analysis

Composite Section Properties

- Full composite action with CLT assumed for vibration analysis
- Additional stiffness could be achieved through composite action with the concrete topping
 - Composite action with concrete topping was not assumed for baseline study
- Limited testing and observations for composite action of topping above acoustic layer

SHEAR CONNECTORS FOR COMPOSITE ACTION WITH CONCRETE TOPPING

- SHEAR CONNECTORS FOR COMPOSITE ACTION WITH CLT

Modal Analysis Results

Design Results and Vibration Performance

LeMessurier.

Design results governed by code requirements for strength and deflection based on 100psf live load **5% damping, and 96 steps/min per AISC DG11 2nd Ed.

Embodied Carbon Performance

- Floor framing and slab only
 - Columns, foundations, façade, etc not included
- Results for Hybrid and All-Timber are reported both with and without the effects of Biogenic Carbon
- Results include Life-Cycle Assessment Stages A to C
- Larger variability in Impact Factors for Timber than for other materials

Summary

- Steel-Timber Hybrid balances the versatility of steel with the benefits of Mass Timber
- Steel-Timber Hybrid can achieve good vibration performance while minimizing depth of structure compared to the All-Timber option
- Embodied Carbon performance of Steel-Timber Hybrid is an improvement over traditional construction

Thank you!

LeMessurier.

CTBUH Steel-Timber Hybrid Conference – May 23, 2022